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Matched asymptotics for two-dimensional
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The purpose of the paper is to demonstrate the effectiveness of the matched asymptotic
expansions (MAE) method for the planing flow problem. The matched asymptotics,
taking into account the flow nonlinearities in those regions where they are most
pronounced (i.e. in the vicinity of the edges), are shown to significantly extend the
range where the linear theory gives good results. Two model problems are used:
the planing flat plate with a spoiler on the trailing edge and the curved planing foil.
Asymptotic solutions obtained by the MAE method are compared with those obtained
using linear and exact nonlinear theories. Based on the results, the asymptotic solution
to the planing problem under the gravity is proposed.

1. Introduction
The main difficulty of the free-surface flow problem (including the planing problem)

is connected with nonlinearity of the boundary conditions which are, moreover, to
be satisfied on surfaces of unknown geometry. Therefore we have to use assumptions
simplifying the problem in question. If we neglect the gravity influence, the solution
to the planing foil problem can be achieved through the methods of the theory of
jets in an ideal fluid (Gurevich 1979). Such solutions are correct in the vicinity of the
planing foil, but lose their correctness at large distance from the foil, where the free
surface level tends to negative infinity logarithmically: y ∼ − log |x| as x→ ±∞ (the
Green paradox; in the case of the flat-plate hydrofoil, see Gurevich & Yampolsky
1933 and Green 1936). That is why the problem facing us has no uniqueness for it is
impossible to set the immersion depth of the trailing edge above the undisturbed level
of the free surface. It is to be underlined that the solution gets considerably more
complicated in the case of a curved foil and at the same time of course, it remains
non-unique (Gurevich 1979).

The formalism of the matched asymptotic expansions (MAE) method which uses
an exact nonlinear solution to the two-dimensional flow problem without gravity as
the inner asymptotic description is one of the effective ways to remove this drawback,
for instance see Shen & Ogilvie (1972); Wu (1967); Ting & Keller (1974, 1977). The
planing lifting-line solution to the three-dimensional flow problem without gravity is
used as the outer expansion in Shen & Ogilvie (1972), i.e. the influence of the finite
span is taken into consideration. The problem of small perturbations of free-surface
flow under gravity caused by hydrodynamic singularities on its boundary is used as
the outer expansion in Rispin (1967), Wu (1967) and Ting & Keller (1974), that is the
influence of gravity at large distance from the foil is taken into consideration. As a
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Figure 1. Planing foil with spoiler under gravity.

‘zero’ level for the free surface appeared at infinity, after the matching procedure the
composite solutions to both problems become unique.

Another simplifying assumption to be introduced is the linearization procedure for
the nonlinear boundary (dynamic and kinematic) conditions. The main postulate of
the linear theory is that the planing hydrofoil brings small perturbations into the flow
under gravity. The linearization procedure has to be accomplished both on the free
surface and on the wetted portion of the foil. The linear planing problem has been
considered by many authors. For instance see the works by Sedov (1979), Sretensky
(1977), Khaskind (1943), Chaplygin (1940), Maruo (1951). It is well known that all
those solutions were found in terms of linear theory adequately describing the flow
pattern for small incidence angles and curvatures of the foils everywhere except the
vicinity of the leading edge. The stagnation point and the sprinkle jet occur in this
region and therefore the perturbations cannot be considered to be small there. The
asymptotic analysis has shown that the linear solution loses its correctness in the
proximity of the leading edge at distances of O(α2), where α denotes the incidence
angle. The linear solution is not correct in the vicinity of the trailing edge with the
spoiler, either. The scale of the area of incorrectness is of O(̄ε), where ε̄ denotes the
relative spoiler length (Rozhdestvensky & Fridman 1991).

The purpose of the present paper is to construct a composite asymptotic solution
to the problem of the flow past a curved planing hydrofoil with a spoiler under
gravity by using the MAE method (figure 1). The linear planing foil problem is
considered to be the outer description and the spoiler and leading-edge flow problems
are considered to be the inner ones. The composite solution is shown to be correct in
the whole flow domain and allows us to remove some drawbacks of the linear theory
(Chaplygin 1940; Maruo 1951; Sedov 1979). The so-called nonlinear edge correction
technique used in the present research has proved its effectiveness for a wide range
of free-surface flow problems: those for the cavitating hydrofoils with rounded noses
(Furuya & Acosta 1973) and sharp ones (Plotkin 1978) and for cavitating wings
(Achkinadze & Fridman 1994). The technique of leading-edge correction in the form
of the multiplicative term was also applied by Kinnas (1991) for partially cavitating
foils.

The spoiler, which is located on the trailing edge, on one hand brings the new
difficulties into the solution to the problem, but on the other hand emphasizes the
advantages of the proposed method. The problem of determining the influence of
the spoiler upon the hydrodynamic coefficients of the planing surfaces has been
considered by Fridman (1990) and Rozhdestvensky & Fridman (1990).

Finally some aspects of the two-dimensional non-steady planing problem were
treated in Faltinsen (1996).
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2. Statement of the problem
The planing hydrofoil of chord C and incidence angle α is assumed to be in the

uniform flow of ideal incompressible fluid under gravity. V∞ and p0 denote the stream
velocity and pressure at infinity. A Cartesian coordinate system (x, y) has its origin at
the middle point of the foil’s wetted length projection onto the stream direction which
coincides with the x-axis direction, the y-axis being directed vertically upwards. The
problem was non-dimensionalized by dividing all the length variables by half of the
wetted length projection a = l/2 and velocity variables by V∞. The Froude number
based on the length l was introduced: Fr = V∞/(gl)

1/2, where g denotes the gravity
acceleration. The spoiler which is mounted upon the trailing edge has the relative
length ε̄ and inclination angle βs ∈ [0; π).

The problem is considered to be solved when the velocity potential function ϕ(x, y)
is found. The harmonic function ϕ(x, y), being the real part of an analytical function
of complex potential F = ϕ+ iψ, has to satisfy the boundary kinematic condition on
the wetted length

∂ϕ

∂n
= − sin θ(x),

the dynamic condition on the free surface

∂ϕ

∂x
− 1

2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2
)
− νy = 0,

and the condition at infinity, where ∂/∂n denotes the derivative in the normal direction,
θ(x) denotes the tangential angle to the foil at point x, and ν = ga/V∞ = 1/(2Fr2).

3. Model problem – planing without gravity
Subdividing the flow domain into a far field (at distances of O(1)) and near fields

(in the vicinity of the edges) we apply the MAE method.

3.1. Linear planing theory – outer asymptotic description

3.1.1. Classical approach

Assume that Fr →∞ (i.e. ν → 0) and that the values of ε̄ = ε/a and θ(x) are small
(̄ε = o(1), θ(x) = o(1), or ε̄ � 1, θ(x) � 1). Under those circumstances we can neglect
the second-order terms in the equations in §2 and can formulate the linearized planing
flow problem without gravity as a Keldysh–Sedov boundary problem for the function
of a complex conjugate velocity (the derivative of the complex velocity potential F(z)
with respect to the variable z)

ωo(z) = uo − ivo =
dF

V∞dz

which is analytic in the upper semi-plane z = x + iy (i.e. in the domain occupied
by the fluid) and is to satisfy the following conditions in the solution class ∞ − ∞
(figure 2):

uo = −1 for x ∈]−∞;−1[∪]1; +∞[,
vo = −θ(x) for x ∈]− 1; 1[.

This is the statement of the outer problem. The class ∞−∞ means that the function
ωo(z) has to have square-root singularities for z = ±1. The function θ(x) = f′(x),
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Figure 2. Outer linear planing problem.

where y = f(x) denotes the foil geometry. The solution to this mixed-boundary
problem can be carried out using the Keldysh–Sedov formulae:

ωo(z) = −1 +
1

π

(
z + 1

z − 1

)1/2 ∫ 1

−1

(
ζ − 1

ζ + 1

)1/2
θ(ζ)

ζ − zdζ +
B

(1− z2)1/2
(1)

where the value of the coefficient B is to be determined through the matching
procedure. Division of the real and imaginary parts of (1) as ζ and z approach the
real axis gives for x ∈ [−1; 1]

uo(x) = −1 +
1

π

(
1 + x

1− x

)1/2 ∫ 1

−1

(
1− ξ
1 + ξ

)1/2
θ(ξ)

ξ − xdξ +
B(

1− x2
)1/2

(2)

and therefore the pressure distribution coefficient is

Co
p =

2

π

(
1 + x

1− x

)1/2 ∫ 1

−1

(
1− ξ
1 + ξ

)1/2
θ(ξ)

ξ − xdξ +
2B(

1− x2
)1/2

. (3)

In the case of planing flat-plate, θ(x) = α, the equations (1)–(3) give

ωo(z) = −1− iα

(
1−

(
z + 1

z − 1

)1/2
)

+
B(

1− z2
)1/2

, (4)

uo(x) = −1 + α

(
1 + x

1− x

)1/2

+
B(

1− x2
)1/2

, (5)

Co
p (x) = 2α

(
1 + x

1− x

)1/2

+
2B(

1− x2
)1/2

. (6)

It is obvious that the outer asymptotic description (1)–(6) is not correct as z → ±1.
This is the classical approach to the two-dimensional linear planing problem. The
analytical or numerical solution to the problem involves, for the arbitrary function
θ(x), some difficulties due to integration procedure.

3.1.2. Non-quadrature approach

The simple non-quadrature approach can be proposed for a wide range of the
functions θ(x). This approach is based upon the method introduced by Terentev
(1972) for supercavitating hydrofoils.

It is obvious that the new function

Ω(z) = ωo(z) + 1− iθ(z) (7)
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has pure real values on the wetted portion (as x ∈ [−1; 1], y = 0) and pure imaginary
values on the free surfaces, see figure 2. Let us assume that the wetted portion of the
planing foil is a polynomial

f(x) =

n∑
i=0

aix
i

and therefore

θ(x) = f′(x) =

n∑
i=1

iaix
i−1

It should be pointed out that the multiplicity of a pole at infinity z → ∞ for the
function Ω(z) is equal to (n − 1), i.e. to the degree of the polynomial f′(x). As the

function ωo(z) ∼ 1/
(
z2 − 1

)1/2
as z → ±1, the similar behaviour of Ω(z) dictates

the following solution to the mixed problem with homogeneous boundary conditions
(∞−∞ class):

Ω(z) = i

(
z + 1

z − 1

)1/2 n−1∑
i=0

Aiz
i +

B(
1− z2

)1/2
(8)

where Ai (i = 0, . . . , n− 1) and B are the unknowns of the solution. Therefore one can
obtain

ωo(z) = −1 + Ω(z) + iθ(z).

Unknown coefficients can be derived from the set of conditions

lim
z→∞

ωo(z) + 1

zi
= 0, i = 0, . . . , n− 1 (9)

which results in
An−1 = −nan;
An−2 = −(n− 1)an−1 + nan;

An−3 = −(n− 2)an−2 + (n− 1)an−1 −
n

2
an;

...

The value of B is to be determined from the matching procedure.
Ω(z) has a simple pole at infinity z → ∞ in the case of a symmetric parabola

f(x) = 2h(1 − x2) + αx as x ∈ [−1; 1] (n = 2, a2 = −2h, a1 = α, a0 = 2h), where α
denotes the incidence angle. Finally, we arrive at the formulae

ωo(z) = −1− i

(
z + 1

z − 1

)1/2

(α+ 4h− 4hz) + iα− 4ihz +
B(

1− z2
)1/2

, (10)

uo(x) = −1 +

(
1 + x

1− x

)1/2

(α+ 4h− 4hx) +
B(

1− x2
)1/2

, as x ∈ [−1; 1]. (11)

3.2. Inner nonlinear descriptions

3.2.1. Spoiler problem

It was mentioned above that outer asymptotic expansion loses its correctness in the
vicinity of the spoiler as z → −1. The picture of the flow shown in figure 3 corresponds
to stretching of local coordinates in this region by a factor 1/ε̄: X1 = (x + 1)/ε̄,
Y1 = y/ε̄, ε̄→ 0. The region occupied by the fluid is bounded by the rigid boundaries
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Figure 3. Flow pattern and auxiliary plane for the spoiler problem.

[OB) and [OA] and the free surface
^
AB, the interval [OA] being of the unit length

|OA| = 1.
The problem arising is a two-dimensional nonlinear problem of the theory of jets

in an ideal fluid. The solution to such a problem can be carried out by Chaplygin’s
method of singular points (Gurevich 1979) based on the idea of determining of
a holomorphic function in complex plane, the function’s zeros and poles being
known and Liuville’s theorem applied. Application of this method gives the following
derivatives of the function of complex velocity potential F1 = ϕ1 +iψ1 in the auxiliary
plane ζ = ξ + iη:

ωi
1(ζ) =

dF1

U1dZ1

= −
(
ζ − i

ζ + i

)βs/π
, (12)

dF1

dζ
= N1ζ, (13)

where N1 denotes the real constant to be determined from

N1

U1

∫ 1

0

η

(
1 + η

1− η

)βs/π
dη =

N1

U1

R = −1, (14)

U1 being the absolute value of the velocity on the free surfaces.
The pressure distribution coefficient (0 6 η < ∞) is

Ci
p1 = 1−

(
ωi

1(ζ)
)2

= 1−
∣∣∣∣η − 1

η + 1

∣∣∣∣2βs/π (15)

where the value of η is obtained from the relationships between physical and auxiliary
coordinates on the interval [OB], see figure 3(a):

X1(η) = −N1

U1

∫ η

1

η

(
η + 1

η − 1

)βs/π
dη, η > 1 (16)

and on the interval [OA]:

|Z1(η)| = −N1

U1

∫ 1

η

η

(
1 + η

1− η

)βs/π
dη, 0 6 η 6 1. (17)
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Figure 4. Flow pattern and auxiliary plane for the leading-edge problem.

The value of U1 is the only unknown parameter in this problem to be determined
through the matching procedure.

Note that Rozhdestvensky & Fridman (1991) contains a set of nonlinear solutions
to the various models of the flow in the vicinity of the spoiler such as spoiler with a
slot, with stagnation zone, etc.

3.2.2. Leading-edge problem

As outer description (1) is not correct in the proximity of the leading edge as z → 1,
stretched local coordinates were introduced in the form

X2 =
x− 1

α2
+ L, Y2 =

y

α2

where L is the distance of the stagnation point from the tip of the leading edge.
The plane of the ‘physical flow’ and the auxiliary plane are depicted in figure 4. The
region occupied by the fluid is bounded by the semi-infinite rigid boundary [CE)

and the free surfaces
^
CD and

^
DFE. The incoming jet of semi-infinite width (the

right-hand point E) is subdivided into two parts: one is beneath the rigid boundary
(the ‘left-hand’ point E) and the second is the re-entrant jet (point D) with its image
in the corresponding point ζ = ia. The point ζ = if is the image of the point F on the
physical plane where the velocity vector is directed normally to the wetted line (i.e.
vertically upward). Denote the width of the oncoming jet as δ, its angle at infinity as
γ and the velocity on its boundary as U2. Note also that the flow rate remains the
same far up- and downstream, that is at the points E and D at infinity.

The Chaplygin method gives the derivatives of the function of the complex velocity
potential F2 = ϕ2 + iψ2 in the auxiliary plane ζ = ξ + iη:

ωi
2(ζ) =

dF2

U2dZ2

= −ζ − 1

ζ + 1
, (18)

dF2

dζ
= N2

ζ(ζ2 − 1)

ζ2 + a2
. (19)

Unknown constants N2 and a are determined from the following conditions:

ωi
2(ia) = exp(−iγ); iq = iU2δ =

∮
ia

dF2

dζ
dζ
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wherefrom

a = tan
γ

2
; N2 =

2U2δ

π(1 + a2)
. (20)

Equations (18) and (19) can be combined to give

Z2(ζ) =

∫ ζ

1

dZ2

dF2

dF2

dζ
dζ

= − 2δ

π(1 + a2)

(
ζ2

2
+ 2ζ +

1− a2

2
log(ζ2 + a2)− 2a arctan

ζ

a

) ∣∣∣∣∣
ζ

1

(21)

and L is found in the form

L = Re (Z2(0)) =
2δ

π
cos2 γ

2

(
2.5− (π − γ) tan

γ

2
+
(

tan2 γ

2
− 1
)

log sin
γ

2

)
(22)

Thus, the three unknown parameters remain in the problem in question are δ, γ
and U2. All of them are to be determined through the matching procedure.

In the case of a horizontal oncoming jet a → 0 and f → 1 as γ → 0 and the flow
pattern coincides with that considered by Wagner (1932). The limiting form of (22)
as γ → 0 is

L∗ = Re (Z2(i)) =
6δ

π
. (23)

The solution (18)–(19) gives another limiting case for the oncoming jet directed
downstream (a → +∞ as γ → π). It is obvious that δ → ∞ and one must change
the stretching factor from 1/α2 to 1/α4. Then the flow pattern coincides with the
one considered by Plotkin (1978) for the leading edge of a supercavitating plate, and
equation (22) reduces for γ → π

L = 17
48

(24)

The pressure distribution coefficient on the wetted portion (0 6 ξ < +∞) for arbitrary
γ is

Ci
p2 = 1−

(
ωi

2(ξ)
)2

= 1−
(
ξ − 1

ξ + 1

)2

(25)

where the value of ξ is obtained from the relationships between physical and auxiliary
coordinates on the interval CE, see figure 4(a):

X2(ζ) = − 2δ

π(1 + a2)

(
−ξ

2

2
− 2ξ+2.5+

a2 − 1

2
log

ξ2 + a2

1 + a2
+ 2a

(
arctan a− arctan

a

ξ

))
.

(26)

3.3. The matching procedure

Generally speaking, the matching procedure is carried out in two steps: the first one
allows us to match asymptotic descriptions in the outer region and in the trailing-edge
region (the velocity U1 in expression (7) and the coefficient B in equation (1) are
determined) and the second one matches the outer description with a known value of
B and leading-edge expansion to yield the values of δ, γ and U2 in (18) and (19).

The limiting form of (2) as x→ −1 is

uoi(x) ∼ −1 +
B

(2(1 + x))1/2
.
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On the other hand one can obtain from (16) that X1 ∼ −N1η
2/(2U1) as X1 → +∞

and η → +∞ and therefore the function ui1 = Re
(
ωi

1(ζ)
)

has the following limiting
form as X1 → +∞:

uio1 ∼ −1 +
2βs
π

1

η
∼ −1 +

√
2 βs
π

(
−N1

U1X1

)1/2

.

Taking into account the fact that X1 = (x+1)/ε̄, these two expressions are compared
to give

U1 = V∞, B =
2βs
π

(
−N1

U1

ε̄

)1/2

=
2βs
π

(
ε̄

R

)1/2

. (27)

The limiting form of (2) as x→ +1 is

uoi(x) ∼ −1 +

(
2

∫ 1

−1

θ(ζ)

(1− ξ2)1/2
dξ + B

)/
(2(1− x))1/2 , (28a)

the value of the coefficient B being governed by (27). The corresponding expression
derived from the non-quadrature approach is

uoi(x) ∼ −1 +

(
B − 2

n−1∑
i=0

Ai

)/
(2(1− x))1/2 . (28b)

The asymptotic expansion of (26) gives

X2 ∼ −
δ

π
ξ2 cos2 γ

2
as X2 → −∞ and ξ → +∞

and therefore the behaviour of the function ui2 = Re
(
ωi

2(ζ)
)

is

uio2 ∼ −1 +
2

ξ
∼ −1 + 2 cos

γ

2

(
δ

π

)1/2
1

(−X2)
1/2
. (29)

The matching procedure for (28) and (29) considering the fact that X2 =
(x− 1)/α2 + L results in

U2 = V∞, δ =
π

8 cos2 γ/2

(
2

∫ 1

−1

θ(ζ)(
1− ξ2

)1/2
dξ + B

)2

1

α2
. (30a)

The matching procedure for (28) and (29) results in the similar expressions

U2 = V∞, δ =
π

8 cos2 γ/2

(
B − 2

n−1∑
i=0

Ai

)2

1

α2
. (30b)

The value of L can be derived from the formula (22). One can see that the only
parameter, namely the angle of the oncoming jet γ, remains unknown and that is why
the solution to the problem under consideration defined everywhere is not unique.
This fact was already mentioned to be an intrinsic feature of two-dimensional planing
problems without gravity. In further consideration the angle γ ∈ [0; π] is considered
to be the parameter of solution. It is shown that the numerical value of γ does not
significantly affect the hydrodynamic characteristics.

It should be noted that the distance of the stagnation point from the tip of the
leading edge for the oncoming jet directed downstream (i.e. as γ → 0) tends to infinity,
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but nevertheless the distance L∗ of the stagnation point from the projection of the
point F onto the X2-axis (see figure 4a) could be used instead of L:

L∗ =
3

4

(
2

∫ 1

−1

θ(ζ)(
1− ξ2

)1/2
dξ + B

)2

1

α2
(31a)

or, for the non-quadrature approach:

L∗ =
3

4

(
B − 2

n−1∑
i=0

Ai

)2

1

α2
. (31b)

Expressions (30a) and (31a) or correspondingly (30b) and (31b) reduce for the
planing flat-plate at incidence angle θ(x) = α as γ → 0 to

δ =
π

8

(
2 +

B

α

)2

,

L∗ =
6δ

π
=

3

4

(
2 +

B

α

)2

= 3

(
1 +

βs

π

(
ε̄

Rα2

)1/2
)2

.

 (32)

Note that the ‘information stream’ in the matching procedure is directed from
the trailing edge to the leading one. In fact, the spoiler geometry parameters βs
and ε̄ dictate the value of the coefficient B which, in turn, defines the sprinkle jet
characteristics.

The additive composite solution for the pressure distribution coefficient can be
constructed in the following manner:

Cc
p(x) = 1− (uc)2 (33)

where uc(x) = uo + ui1 + ui2 − uio1 − uio2 . In the case of the flat plate with the spoiler
(γ = 0) we arrive at the following expressions:

uo(x) = −1 + α

(
1 + x

1− x

)1/2

+
2βs
π

(
ε̄

R

)1/2
1(

1− x2
)1/2

,

ui1(x) = −
(
η − 1

η + 1

)βs/π
, where x =

ε̄

R

∫ η

1

η

(
η + 1

η − 1

)βs/π
dη − 1,

x = 1−
(
α+

βs

π

(
ε̄

R

)1/2
)2(

2(
1 + ui2

)2
+

2

1 + ui2
− 1 + log

1− ui2
1 + ui2

)
,

uoi
1 (x) = −1 +

βs

π

(
2ε̄

R

)1/2
1

(1 + x)1/2
,

uoi
2 (x) = −1 +

√
2

(
α+

βs

π

(
ε̄

R

)1/2
)

1

(1− x)1/2
.

3.4. Exact solutions to nonlinear planing problems

Two exact nonlinear solutions are presented in this subsection: the first is the solution
to the problem of the planing flat plate with the spoiler and the second is the solution
to the problem of the planing arched foil. Both of them are useful to verify asymptotic
results. Note that the latter was obtained in close cooperation with S. M. Shebalov.
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Figure 5. Flow pattern and auxiliary plane for the planing flatplate with the spoiler.

3.4.1. Planing flat plate with spoiler

Consider the nonlinear planing problem without gravity as θ(x) = α. Based on
the classical work of Gurevich & Yampolsky (1933) we introduce a new Cartesian
coordinate system which has its origin in the stagnation point, the x-axis coinciding
with the flat plate, see figure 5. As before the spoiler on the trailing edge is of length
ε and has an inclination angle βs. The geometrical parameters of the sprinkle jet are
δ and γ0. The conjugate velocity ωn(z) is to satisfy the free streamline condition of
constant speed and the condition at infinity ωn → exp(−iα) as x→∞.

With the correspondence between the physical z = x + iy plane and auxiliary
quadrant ζ = ξ+ iη shown in figure 5, the Chaplygin method allows us to write down
the following solution:

ωn(ζ) =
dF

V∞dz
= −ζ − b

ζ + b

(
ζ − t
ζ + t

)βs/π
, (34)

dF

dζ
= N

ζ(ζ2 − b2)

(ζ2 + d2)(ζ2 + 1)2
. (35)

The equations (34) and (35) can be combined to give

z(ζ) =

∫ ζ

b

dz

dF

dF

dζ
dζ = − N

V∞

∫ ζ

b

ζ(ζ2 + b2)

(ζ2 + d2)(ζ2 + 1)2

(
ζ + t

ζ − t

)βs/π
dζ. (36)

Five conditions

l =

∫ ∞
t

dz

dF

dF

dζ
dζ, ε exp(−iβs) =

∫ t

0

dz

dF

dF

dζ
dζ,
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iδV∞ =
1

2

∮
id

dF

dζ
dζ, ωn(i) = exp(−iα), ωn(id) = exp(−iγ0)

give the following system of five nonlinear transcendental equations in six unknowns
b, d, δ, t, γ0, N/V∞:

l = − N

V∞

∫ ∞
t

ξ(ξ2 + b2)

(ξ2 + d2)(ξ2 + 1)2

(
ξ + t

ξ − t

)βs/π
dξ, (37)

ε = − N

V∞

∫ t

0

ξ(ξ2 + b2)

(ξ2 + d2)(ξ2 + 1)2

(
ξ + t

ξ − t

)βs/π
dξ, (38)

2 arctan
b

d
+

2βs
π

arctan
t

d
= π − γ0, (39)

2 arctan b+
2βs
π

arctan t = π − α, (40)

N

V∞
=

2δ

π

(d2 − 1)2

(d2 + b2)
. (41)

It is easy to see that the solution is not unique for the number of unknowns is
greater than the number of conditions. It should be mentioned that this problem can
be interpreted as a supercavitating problem in the case of a given value of δ, the
solution then being unique. The special case of the problem under consideration of
γ0 = π and βs = π/2, see figure 5(b), was analysed by Luckashevsky et al. (1978).

Equation (39) gives d → ∞ as γ0 → π and βs ∈ [0; π]. As the ‘physical’ length of
the flatplate l → ∞ too, the wetted length lw is introduced instead, the value of lw
being determined according to Wagner (1932):

lw = |F ′O| = 2δ

π
Re

{∫ if

t

ξ(ξ2 + b2)

(ξ2 + d2)(ξ2 + 1)2

(
ξ + t

ξ − t

)βs/π
dξ

}
(42)

where the value of f can be derived from the condition ωn(if) = −i written down in
the form

arctan
b

f
+
βs

π
arctan

t

f
=
π

4
. (43)

The pressure distribution coefficient on the wetted portion is

Cn
p (ξ) = 1− ωn(ξ)ωn(ξ) = 1−

(
ξ − b
ξ + b

)2 ∣∣∣∣ξ − tξ + t

∣∣∣∣2βs/π (44)

where ξ = Re(ζ) is connected to z through the relation (36).
The total force P acting on the planing flat plate with the spoiler is calculated by

integration of Cn
p (ξ) as

P = − iρV 2
∞

2

∫ ∞
0

(
1− ωn(ξ)ωn(ξ)

) dz

dζ
dζ (45)

This formula gives the expressions for the lift and drag coefficients

CL =
2δ

lw

(
b+

βs

π

t(1 + b2)

1 + t2
− sin α

)
, CD =

2δ

lw
(1 + cos α). (46)
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Let us analyse the solution to the problem under consideration in the case of

γ0 → π, α→ 0 and
ε

l
→ 0.

It is clear from what was done above that b→ +∞ and t→ 0+. Taking account of
only linear terms in the equations (34)–(46) under those circumstances results in

t ∼ 1

2

(
ε

a

1

R

)1/2

, R =

∫ 1

0

ξ

(
1 + ξ

1− ξ

)βs/π
, lw = 2a, (47)

|F ′B|
a
∼ 12

b2
∼ 3

(
α+

2βs
π
t

)2

, (48)

dF

V∞dz
∼ 1− 2

b
ζ − 2βs

π

t

ζ
,

dF

dζ
∼ −2δV∞b

2

π

ζ

(ζ2 + 1)2
, (49)

CL ∼ πα+ 4βst. (50)

The conformal mapping of the first quadrant of the ζ-plane onto the upper semi-
plane u has the form

ζ = i

(
u+ 1

u− 1

)1/2

.

Substituting this expression into (49) gives

dF

V∞dz
= 1− iα

(
u+ 1

u− 1

)1/2

+
4βs
π

it
1(

u2 − 1
)1/2

. (51)

Note that, with the difference between the coordinate systems, equation (51) is the
same as equation (4), where the value of B is determined from (27). Moreover, the
asymptotic and nonlinear approaches give similar formulae for the distance of the
stagnation point from the tip of the leading edge (L∗ and |F ′B|/a in (32) and (48)
respectively).

3.4.2. Planing arched foil

The solution gets significantly more complicated when considering the nonlinear
planing problem without gravity in the case of an arbitrary θ(x) for it is impossible
to put the function θ(ζ) on the part of the auxiliary plane ζ which corresponds to the
rigid surface and therefore it is impossible to solve the boundary problem there.

Thus we have to determine not only the conformal transformation, which will
transform the flow region z into the auxiliary plane ζ, but also the boundary condi-
tions. Let us use the modification of the Sedov method by Gurevich (1979) to solve
the planing problem depicted in the figure 6(a). The plane of the complex poten-
tial F = ϕ + iψ and the auxiliary upper half-plane ζ are shown in figure 6(b) and
figure 6(c) respectively.

With the correspondence between the planes, the derivative of the complex potential
in the ζ-plane is

dF

dζ
= N

ζ

ζ − d (52)

where ζ = d is the image of the point D. The value of N is determined from the
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Figure 6. (a) Flow pattern for the planing arched foil. (b) The plane of the complex potential.
(c) The corresponding auxiliary plane.

following condition of mass conversation (qD denotes the strength of the sprinkle jet):

iqD = iδV∞ = −1

2

∮
d

dF

dζ
dζ

from which

N = −δV∞
πd

. (53)

The complex conjugate velocity dF/dz can be written down in the form

dF

dz
= V exp(−iΘ) = V∞ exp(−iλ) (54)

where V is the velocity absolute value and λ denotes the Levi–Civita function

λ = Θ + i log
V

V∞
= Θ + iτ. (55)
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The function λ is analytic in the upper half-plane ζ and tends to zero at infinity.
The mixed boundary problem arising for the function λ(ζ) is shown in figure 6(c).
The function θ(x) is connected to the foil topography y = f(x) through the relation
θ = arctan(df/dx).

The Keldysh–Sedov formula gives the following solution to this problem in the 0–0
class:

λ(ζ) = − 1

π
((ζ+1)(ζ − a))1/2

{∫ a

−1

θ(t)

[(1+t)(a−t)]1/2

dt

t− ζ+

∫ a

0

π

[(1+t)(a−t)]1/2

dt

t− ζ

}
(56)

which exists if and only if

1

π

∫ a

−1

θ(t)

[(1+t)(a−t)]1/2
dt+

∫ a

0

dt

[(1+t)(a−t)]1/2
= 0. (57)

Note that the function θ(ξ) is an unknown one and the integrals in equations (56)
and (57) cannot be calculated yet. The parameters of the conformal transformation
ζ(z) (i.e. the variables a and d) are to be determined from the conditions

dF

dz

∣∣∣∣
ζ= d

= V∞ exp(−iγ),
dF

dz

∣∣∣∣
ζ=∞

= V∞ (58)

or, which is the same

Re{λ(d)} = γ, Re{λ(∞)} = 0.

Using equation (56) those conditions can be rewritten to give

− 1

π
[(d+ 1)(d− a)]1/2

∫ a

−1

θ(t)

[(1+t)(a−t)]1/2 (t− d)
dt+

π

2
+ arcsin

d(a− 1) + 2a

d(a+ 1)
= γ.

(59)

1

π

∫ a

−1

θ(t)

[(1+t)(a−t)]1/2
dt+

π

2
− arcsin

1− a
1 + a

= 0. (60)

It should be pointed out that the last expression is the same as the equation (57).
Introducing the arc coordinate s(ξ) for the wetted portion of the planing foil so

that 0 6 s 6 S (where S denotes the whole wetted length and the value of s increases
from point A to point B, figure 6) gives the relationship

θ = arctan

(
dy/ds

dx/ds

)
.

This equation can be used in conjunction with the equality

dz

ds
= exp(iθ)

to give

s(ξ) = − δ

dπ

∫ ξ

a

exp{−iθ(t)} exp{iλ(t)} tdt
ζ − d . (61)

Substituting the solution (56) as 1 6 ξ 6 a into (61) finally gives

s(ξ) = − δ

dπ

∫ a

ξ

G(t, a, d)dt, (62)
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where

G(t, a, d) =
2 [a(1 + t)(a− t)]1/2 + t(a− 1) + 2a

(1 + a)(t− d)

× exp

{
[(1 + t)(a− t)]1/2

π

∮ a

−1

θ(t)

[(1+t)(a−t)]1/2

dt

t− ξ

}
.

(63)

The function s(ξ) clearly has to satisfy the condition

s(−1)− S = 0. (64)

Thus there are four unknown parameters a, d, δ and γ and the unknown function
θ(ξ) (1 6 ξ 6 a) in the problem under consideration. On the other hand there are
four conditions to obtain the solution to the problem: (59), (60), (64) and the singular
integral equation (62). Just as in the previous subsection, it is easy to see that the
solution is not unique for the number of unknowns is greater than the number of
conditions. Nevertheless, the numerical analysis has shown that the problem can be
solved for the given value of γ which does not significantly affect the hydrodynamic
coefficients.

4. Planing under gravity – asymptotic approach
Basing upon the asymptotic method and results obtained in the previous section,

let us consider the more general problem of the planing foil with the spoiler under
gravity.

Following the MAE method, the flow domain is subdivided into far-field and
near-field regions in the same manner as for the planing problem without gravity: at
distances of O(1) and in the vicinity of the edges.

4.1. Outer problem – linear theory

In the case of (x, y) = O(1), α = o(1) and ε̄ = o(1) one can use the method developed
by Sedov (1979). It was shown Rozhdestvensky & Fridman (1990) that the presence
of the spoiler on the trailing edge dictates the class of solution to the boundary
problem, namely ∞−∞. The function of the complex potential is

F(z) = V∞(F1(z)− z) (65)

where

F1(z) = e−iνz

(∫ z

+∞

(
ξ −

∞∑
n=1

nan(t−
(
t2 − 1

)1/2
)n

)
ieiνt(

t2 − 1
)1/2

dt+ A

)
(66)

and A = A1 + iA2 denotes the wave amplitude at infinity as x → +∞, parameter ν
being ν = ga/V∞ = 1/(2Fr2) as in §2.

The value of ξ is derived from the Loran-series expansion for the following
composition

dF1

dz
+ iνF1 =

iξ

z
+

iξ1

z2
+ · · · . (67)
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The values of the real coefficients an, (n = 1, 2, . . .) are to be determined from the
algebraic system of linear equations:

(2n+ 1)a2n+1 + b2n+1 +
2ν

π

∞∑
i=0

(
1

4(i + n+ 1)2 − 1
− 1

4(i− n)2 − 1

)
a2i+1 = 0,

2na2n + b2n +
2ν

π

∞∑
i=1

(
1

4(i + n)2 − 1
− 1

4(i− n)2 − 1

)
a2i = 0,

 (68)

where bn (n = 1, 2, . . .) are the coefficients of the Fourier-series expansion:

−θ(x)− ν2

∫ x

1

∫ x1

1

θ(x2)dx2dx1 + ν2ζ(1− x)− νη − νξσ =
1

sin σ

∞∑
n=1

bn sin nσ

and σ = arccos x, θ(x) denotes the tangential angle to the foil at point x.
The following notation was used in the previous formula:

η = Re(F1(1)) = A1 cos ν + A2 sin ν − ξQ0 +

∞∑
n=1

nanQn(ν),

ζ = Im(F1(1)) = −A1 sin ν + A2 cos ν + ξP0 −
∞∑
n=1

nanPn(ν),

Pn(ν) + iQn(ν) = e−iν

∫ 1

+∞

(
t−
(
t2 − 1

)1/2
)n

(
t2 − 1

)1/2
eiνtdt.


(69)

Note that an = O(n−3) as n → ∞. The coefficients an can be interpreted as
holomorphic functions of η, ζ and ξ for given ν > 0.

The conjugate velocity ωo(z) = uo − ivo is

ωo(z) =
dF

V∞dz
= −1− iνF1(z) +

i(
z2 − 1

)1/2

(
ξ −

∞∑
n=1

nan

(
z −

(
z2 − 1

)1/2
)n)

(70)

and on the wetted portion of the foil where x ∈ [−1; 1], y = 0

uo(x) = −1 +

( ∞∑
n=1

nanTn(x)− ξ
)

1(
1− x2

)1/2
, (71)

Co
p =

( ∞∑
n=1

nanTn(x)− ξ
)

2(
1− x2

)1/2
, (72)

where Tn(x) = cos arccos nx denote the Chebyshev polynomials.
To close the solution, Sedov introduced a condition at the trailing edge which is

equivalent to the Kutta–Joukowsky one. In the case of ε̄ > 0 the Kutta–Joukowsky
condition is substituted by the one provided by the matching procedure.

4.2. Inner problems

The outer expansion for the conjugate velocity ωo(z), derived in the framework of the
linear theory, loses its correctness near the edges as z → ±1, namely in the regions
where z − 1 = O(α2) and z + 1 = O(̄ε). Similar results were obtained for the planing
foil without gravity, Fr = ∞. There is just one, but significant, difference – one must
take into account the influence of gravity in the inner problems. Nevertheless it is easy
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to see that after the stretching of the local coordinates in the vicinity of the leading
and trailing edges by the factors s1 = 1/α2 and s2 = 1/ε̄ respectively, the characteristic
lengths in both regions are of o(1). That is why the local Froude numbers are of the

order of Fri1 = O(s
1/2
1 ) and Fri2 = O(s

1/2
2 ) (i.e. Fri1 � 1 and Fri2 � 1) and we can neglect

gravity in the inner expansions. Thus the asymptotic solutions to the local problems
without gravity (12)–(13) and (18)–(19) are used as inner expansions.

4.3. The matching procedure

The matching procedure is carried out in just the same way as in the case of planing
without gravity. At the first stage the outer asymptotic expansion and the inner one
in the spoiler vicinity are matched, the new condition being determined instead of the
Kutta–Joukowsky one. The second stage allows the sprinkle jet parameters δ, γ and
U2 in the local problem in the proximity of the leading edge to be derived.

As the limiting form of (71) as x→ −1 is

uoi(x) ∼ −1 +

( ∞∑
n=1

(−1)nnan − ξ
)

1

[2(1 + x)]1/2
,

the matching procedure results in

U1 = V∞, B =

∞∑
n=1

(−1)nnan − ξ =
2βs
π

(
ε̄

R

)1/2

. (73)

On the other hand, the limiting form of (71) as x→ +1 is

uoi(x) ∼ −1 +

( ∞∑
n=1

nan − ξ
)

1

[2(1− x)]1/2
,

and therefore

U2 = V∞, δ =
π

8 cos2 γ/2

( ∞∑
n=1

nan − ξ
)

1

α2
. (74)

The second equation in (73) gives the condition to close the outer linear problem.
The application of this condition results in the following expression for the sprinkle
jet thickness δ:

δ =
π

8 cos2 γ/2

( ∞∑
n=1

(2n− 1)
a2n−1

α
+

2βs
π

(
ε̄

R

)1/2
1

α

)2

. (75)

The distance of the stagnation point from the tip of the leading edge in the case of
γ = 0 is

L =
6δ

π
=

3

4

( ∞∑
n=1

(2n− 1)
a2n−1

α
+

2βs
π

(
ε̄

R

)1/2
1

α

)2

. (76)

The composite additive expansion for the pressure distribution coefficient is con-
structed in the same manner as for the planing problem without gravity

Cc
p(x) = 1− (uc)2 (77)

where uc(x) = uo + ui1 + ui2 − uio1 − uio2 .
It should be pointed out that a1 = α and ak = 0, k > 2 as Fr → ∞ and formulae

(73)–(76) give the solution to the planing problem without gravity as a special case.
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Figure 7. The pressure distribution coefficient Cp computed by means of LT, NLT and MAE,
versus x for the planing flat plate.
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Figure 8. The pressure distribution coefficient Cp close to the leading edge.

5. Numerical results and discussion
The main idea is to compare the hydrodynamics coefficients computed within the

framework of the linear theory (LT), the nonlinear one (NLT) and the asymptotic
approach (AA). Two planing surfaces have been chosen: the planing flat plate with
the spoiler and the planing arc of a parabola with the topography of the wetted
portions f(x) = αx and f(x) = 2h(1− x2) + αx respectively.

It is well known that the linear theory of the planing surfaces gives satisfactory
results only in the case of small values of the foil curvature and incidence angle. On
the other hand this theory has provided powerful methods to solve effectively the
problems in question. Nonlinear theory requires more complicated techniques even
for the simple special cases. As shown, the asymptotic approach based on the MAE
method combines the advantages of both linear and nonlinear theories: on one hand
the asymptotic solution is of the same simplicity as the linear one and on the other
hand the MAE method takes into account the nonlinear effects that considerably
affect the hydrodynamic coefficients.

Most of the next set of figures contain the comparison between numerical results
computed by mqeans of LT, NLT and AA. Figures 7 and 8 show the pressure distribu-
tion coefficient Cp versus x for the planing flat–plate without the spoiler, the incidence
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Figure 9. The pressure distribution coefficient Cp computed by means of LT, NLT and MAE,
versus x for the planing flat plate with the spoiler.
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Figure 10. The pressure distribution coefficient Cp computed by means of LT, NLT and MAE,
versus x for the planing parabola f(x) = 2h(1− x2) + αx.

angle α being 5◦. As the geometrical parameters are small, the linear theory is accu-
rate everywhere except in the vicinity of the leading edge. The asymptotic solution
approaches the nonlinear one even in the region where the linear theory gives a result
coming arbitrarily close to infinity (figure 8). Comparing the pressure distribution co-
efficient Cp(x) in the case of the flat plate with the spoiler for a wide range of incidence
angle and spoiler length ε̄ shows that the asymptotic and nonlinear solutions are nearly
the same in the spoiler proximity too, the linear solution being unlimited in the vicinity
of both edges x→ ±1. Corresponding numerical results are depicted in the figure 9.

Some calculations for the planing parabola f(x) = 2h(1− x2) + αx are presented in
figures 10 and 11. The MAE method gives results compatible with nonlinear theory
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Figure 11. The lift coefficients CL computed by means of NLT and MAE, versus incidence angle α
for the planing parabola f(x) = 2h(1− x2) + αx.
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Figure 12. The lift coefficient CL computed by means of LT and MAE for the planing flat plate
with the spoiler under gravity.

for the pressure distribution and lift coefficients. It is assumed that the gravity force
is not acting (Fr →∞) for the calculations presented in figures 7–11.

The calculations for the planing problem under gravity demonstrate the same: the
asymptotic method shows much more satisfactory results (approaching the nonlinear
results) than the linear theory, the level of complication of the solution procedure
being the same in both cases. The lift coefficients CL and Ca = CL/(πν) versus the
spoiler parameter ε̄/α2 are shown in figures 12 and 13 for the planing flat plate
with the spoiler for Froude numbers Fr = 0.40825, 1.0426 and 5. The incidence
angle equals 5◦ and the inclination angle for the spoiler equals to 90◦. It should be
mentioned that the lift coefficient Ca was introduced by Chaplygin (1940) to analyse
the lifting capacity of the planing foil for small Froude numbers. Using five terms
an, n = 1, . . . , 5 in expression (72) seemed to be accurate enough for the numerical
calculations.
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Figure 13. The lift coefficient Ca computed by means of LT and MAE for the planing flat plate
with the spoiler under gravity.
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Figure 14. The comparison of the lift coefficients CL versus the incidence angle α computed for
the planing flat plate by means of LT, NLT and AA.

Figure 14 shows the comparison of the lift coefficients CL versus the incidence
angle α computed for the planing flat–plate by means of LT, NLT and AA. The lift
calculated using NLT and AA had similar values in a wide range of angle α.

6. Conclusion
An asymptotic approach based on the matched asymptotic expansions method has

been used to solve the two-dimensional planing flow problem under gravity. The
linear planing theory is used for the outer description and the nonlinear theory of
jets in an ideal fluid, applied to the problem arising near the edges, is used for the
inner one. The matching procedure gives a composite solution to the problem under
consideration that is valid everywhere. The detailed analysis of the planing problem
without gravity is presented, a new non-quadrature linear approach being proposed.
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Two exact nonlinear solutions are derived and are compared with the asymptotic
solutions to the following problems: the planing flat plate with a spoiler and the
planing arched foil. The numerical results show the effectiveness of the asymptotic
approach proposed.
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